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A generalized O(n) matrix version of the classical Heisenberg model, introduced 
by Fuller and Lenard as a classical limit of a quantum model, is solved exactly 
in one dimension. The free energy is analytic and the pair correlation functions 
decay exponentially for all finite temperatures. It is shown, however, that even 
for a finite number of spins the model has a phase transition in the n --* oo limit. 
The transition features a specific heat jump, zero long-range order at all tem- 
peratures, and zero correlation length at the critical point. The Curie-Weiss ver- 
sion of the model is also solved exactly and shown to have standard mean-field 
type behavior for all finite n and to differ from the one-dimensional results in 
the n ~ oo limit. 

KEY WORDS: Heisenberg model; classical limit; matrix models; phase 
transition; spherical limit; mean-field model. 

1. I N T R O D U C T I O N  

The problem of the classical limit of q u a n t u m  spin systems has been the 
subject of some interest ing papers, (1-3/ beginning  with the work of Lieb (1/ 

who showed that  if one considers a q u a n t u m  system of spins, each having 
angular  m o m e n t u m  l, and  one normalizes  the spins by dividing by l, then 
in the (classical) limit l ~ 0% the normal ized  q u a n t u m  par t i t ion  funct ion 

becomes that  of the corresponding classical system of spins which are 

three-dimensional  uni t  vectors, and  the trace in the q u a n t u m  par t i t ion  
funct ion is replaced by an in tegrat ion for each spin over the uni t  sphere S 2 
in N3. In  part icular  the classical limit of the q u a n t u m  Heisenberg model  is 

the classical Heisenberg (0 (3 ) )  model. 
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The classical Heisenberg model on S 2 has a straightforward 
generalization to the so-called n-vector model where the spins are n-dimen- 
sional unit vectors and the configuration space is S n- 1. This model has the 
interesting property that it is equivalent to the spherical model in the limit 
n - +  0 0 .  (4'5'6) 

Related to Lieb's work an interesting question then naturally arises: is 
there any quantum correspondent of the n-vector model? The answer to 
this question has been provided in the negative by Simon. (2/That is, there 
is no quantum analog of the usual n-vector model. Hence in looking for an 
O(n) generalization of the classical Heisenberg model, subject to the con- 
dition that it is the classical limit of some quantum spin model in the sense 
of Lieb, one has to discover what replaces S 2 as the classical limit space. 

A direction in N3 is given by a unit vector, but equally well by the 
plane orthogonal to it. Therefore S 2 may be thought of as the manifold of 
oriented planes through the origin; that is, the Grassmann manifold 
G(2, 3). Thus, a possible candidate for a generalized classical manifold is 
G(2, n), the manifold of oriented two-planes in ~n, passing through the 
origin. This simple intuitive idea was the starting point of the paper by 
Fuller and Lenard, 13) who introduced a class of O(n) matrix spin models, 
replacing the n-vector model as a generalization of the 0(3)  classical 
Heisenberg model. Moreover, they showed that their classical model can be 
obtained from a corresponding quantum model in the limit of infinite 
angular momentum. 

Our purpose here is to study certain instances of the Fuller-Lenard 
model which can be solved exactly. 

In the following section we present a formulation of the Fuller-Lenard 
model and in Section 3 we give an exact solution of the one-dimensional 
model with nearest-neighbor interactions. Pair correlations for the one- 
dimensional model are evaluated in Section 4 and in Section 5 we study the 
n ~ m spherical limit of the one-dimensional model. In this limit we find 
unexpectedly that the model has a phase transition of a rather peculiar 
type: the specific heat has a jump discontinuity at a finite critical tem- 
perature but there is zero long-range order for all finite temperatures. 
Moreover, one does not need the thermodynamic limit to obtain a phase 
transition in the n --, oo limit. Thus in the spherical limit even a two-spin 
system has a phase transition! 

In order to show that the model is not dimension independent in the 
spherical limit we examine the Curie-Weiss version of the model in Sec- 
tion 6. Our results are summarized and discussed in the final section. 
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2. FORMULATION OF THE FULLER-LENARD MODEL 

We begin by characterizing the model configuration space G(2, n) 
which, as we have seen, is a possible classical limit space generalization to 
higher dimensional spaces of S 2. 

An oriented two-plane a in N" can be defined as the equivalence class 
with respect to transformations of the form 

a' = a cos 0 + b sin 0 

b' = - a  sin 0 + b cos 0 
(2.1) 

of ordered pairs (a, b) of two orthogonal unit vectors in ~ .  A func t ionf  = 
f ( a , b )  may be regarded as defined on G(2, n) whenever (2.1) implies 
f (a ,  b ) =  f(a ' ,  b') and in such a case we write f =  f (a) .  

Alternatively, G(2, n) can be viewed as the set 

M , z = { m ~ n •  Tr(m'm)=2, rankm=2} n~>2 (2.2) 

where ~'n• is the set of real nxn matrices and the superscript t 
denotes the transpose of the matrix. In order to see that this is so we 
observe that rn(a)e Mn can be expressed uniquely in terms of the vectors 
(a, b) determining cr by 

mjk( ~ ) = ajb k -- ak bJ (2.3) 

Expressed in this form, it is clear that when n = 3 the right-hand side of 
(2.3) represents the vector product of a and b and the nonzero elements of 
m(a) are the components of the unit vector orthogonal to the plane 
generated by a and b. 

It should be noted that O(n) acts transitively on G(2, n) (or Mn) and 
hence G(2, n) (or Mn) is a homogeneous space of O(n). It follows that the 
invariant integral over G(2, n) (or M,,) can be defined in terms of the Haar 
integral over O(n) by 

;G(z.n) .f(~r) d/z(~r) = fo(n)f(ga~ dg (2.4) 

where dg is the normalized Haar measure on O(n) and ao ~ G(2, n) is an 
arbitrary fixed plane. Alternatively, in terms of Mn, we have 

fM, f(m ) dp(m) = fo(n f(gm o g') dg (2.5) 

where mo e Mn is arbitrary. 
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To construct their quantum model, Fuller and Lenard considered the 
sequence of spherical harmonic representations of O(n) and introduced 
generalized spin operators Ljk as the infinitesimal generators of the 
representation, the Hilbert space on which they act being the represen- 
tation space. Defining next the quantum spin Hamiltonian and its classical 
correspondent in much the same way as in Lieb's original work, Fuller and 
Lenard were then able to show that the classical model, with G(2, n) as its 
limit manifold, could be obtained from the quantum model as an 
appropriate limit of infinite angular momentum. It is to be noted, however, 
that G(2, n) is not the only possible generalization of S 2. The classical limit 
space in fact depends on which representation one chooses for O(n) ~2~. 

The class of quantum spin models considered by Fuller and Lenard 
includes the generalized Heisenberg model defined by 

N 

j g o = _  ~ jr, r(,)r(,') (2.6) ~jk  ~jlc 
r , r ' =  1 j , k  = 1 

where r, r' denote lattice sites. The classical limit of this model, which will 
be our concern in this paper, has Hamiltonian given by 

1 N 
~ , =  --~ ~. J,r, Tr(m,mtr ,) (2.7) 

r , r '  = 1 

with m, s M , ,  r= 1, 2 ..... N. 
Although the trace in (2.7) can be viewed as a scalar product it is bet- 

ter to think of this model as having matrices assigned to each site rather 
than vectors in the n-vector model. Notice, however, that in view of the 
restrictions (2.2) imposed on the matrices in question, the dimension of the 
underlying configuration space is 2 n -  4. It should also be noted that when 
n = 3 and 2, the model reduces to the classical Heisenberg and Ising 
models, respectively. We also note in passing that similar matrix models 
appear in field theory (7 lo) in connection with the so-called "planar- 
diagram" approximation. 

3. PARTIT ION FUNCTION OF THE O N E - D I M E N S I O N A L  
M O D E L  W I T H  NEAREST NE IGHBOR I N T E R A C T I O N S  

The Hamiltonian for the one-dimensional model with nearest-neighbor 
interactions only is given by 

j N ~  11 t 
jga= __ _2Tr(mrmr+l ) (3.1) 

z 
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where m~ are elements of Mn, the set of n x n skew-symmetric matrices of 
rank two satisfying the normalization condition 

1 T , r(mrmr) = 1 r = 1, 2 ..... N (3.2) 

and the t superscript in (3.1) and (3.2) denotes transpose of the matrix. 
The partition function of the model is given by 

Zn,N(K)= ."" . exp K rZ 1~ r(mrmr+l) r=lI~ d]2(mr) (3.3) 

where K = J/kT, and d#(m) denotes the probability measure defined on Mn 
which is invariant under O(n). That is 

where the integral on the right-hand side is taken with respect to the nor- 
malized Haar measure over O(n) and mo is an arbitrary element of M.. 

In order to evaluate the partition function (3.3) we need to evaluate 
integrals of the form 

K 
Ir=fMoexp['-srr(mrmr+l)ldl-l(mr+l) 

=fO(n) expIKTr(m,  gr+lmogtr+l)ldgr+l (3.5) 

for some fixed (arbitrary) moeM..  Since O(n) acts transitively on Mn, 
there exists a rotation Sr e O(n) such that 

m, = s~mos' r (3.6) 

Taking account of the invariance of the measure with respect to O(n), it 
then follows on defining g = s' r g,+ 1, that 

[ K ' ' 1 2 * r ' ~ 1 7 6  I,= fo(,)ex p ) dg=_kn(K) (3.7) 

is independent of r and, in particular on referring back to (3.5), indepen- 
dent ofm, .  

By integrating successively over mu, mA,_ 1,---, m2 in the expression 
(3.3) for the partition function and using the above results we then have 
that 

Zn,N(K ) = [ j . n (K) ]X  1 (3.8) 
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It is interesting to note that the factorization property (3.8) for the 
open chain model, which is well known for the Ising and n-vector model 
chains, is manifest in general here as a group invariance property of the 
underlying configuration space. 

One can proceed in several ways to evaluate the integral (3.7). Here 
we use a direct group integration method which is of some intrinsic 
pedagogical interest. In the following section we use a different method 
which is conceptually simpler and a more direct and convenient com- 
putational method, particularly for the evaluation of correlation functions. 

To proceed with the group integration method we first express the 
integral over the (doubly connected) group O(n) in terms of integrals over 
SO(n), which in our special case, give 

,~n(K) = l{)~n(K) + in[  ( - -  1) n+l K] } (3.9) 

where 2n(K) is given by (3.7) but with the integral now over SO(n) instead 
of O(n). 

The normalized invariant measure on SO(n) is given in terms of Euler 
angles by 

n 1 k 

dg= (-[ 27z-l/2F(l/2) l-[ E[ (sin 0}k)) j -1  dO} k) 
l = 1  k - l j = l  

(3.1o) 

where 

0~)e  [0, 2~) and 0}k)e [0, ~) j >  l (3.11) 

and in general any element of SO(n) can be written as a product of proper 
planar rotations taken through the set of Euler angles. 

Finally, to simplify the computation we choose for the arbitrary 
matrix mo in (3.7) the particular form 

m 0 ~-~ 

O ~ 2  0 

0 
- 1  

1) 
0 

(3.12) 

where Ok denotes the k x k null matrix. 
As an example, the Ising case n = 2 has 

cos 0 sin 0 g =  
- s inO cosO/  

(3.13) 
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and 

1 Tr(m~ gmo g') = 1 (3.14) 

yielding from (3.7) and (3.9) the well-known result 

1 
fs (eK+e-~)dg=c~ (3.15) , I : (K) = ~ o~2) 

In the Heisenberg case n = 3 we have 

' 2 ; :  )~3(K) = 1 - ~  2 dO d(~ sin ~ d~ exp[K(cos 0 cos ~ - sin 0 sin ~b cos ~)]  

= K  -j  sinh K (3.16) 

In general when n ~> 4 the choice (3.12) for mo reduces the complexity 
of the problem considerably since in this case for arbitrary g, 

�89 Tr(m~gmog')=cosOcosO-sinOsin(~cosO' cosO' (3.17) 

where 

O=t~(n~n 1i} @ =  ~ ( n - -  l )  0' = a( ,~  2)  and ~b'- o(~-3) 
v n  -- 2 C'n 2 - -  ~ n  -- 3 

Using the expression (3.10) for dg and integrating over all 0} e) except 
for those appearing in (3.17) one then obtains for n > 3 

)~n(K) = (n - 2)(n - 3) ff;fo exp[Kcos 0 cos ~b - sin 0 sin ~b cos 0' cos ~b'] (2=) 2 

�9 sin" 2 0(sin 0 sin 0')" 3 s in , -4  ~, dO de dO' d~' (3.18) 

Finally, after integrating successively over ~b', 0', ~b, and 0 one obtains, 
as shown in Appendix A, the expression 

2n(K)= ~F2 1;~,  2 ' (3.19) 

where 1F2 is the generalized hypergeometric function defined by 

1F2(c~; fl, 7; z) : ~ (~)k z k 
k~o (fl)t,(7)k k! (3.20) 

with 

(~)o = 1 and (c~)~ = ~(e + 1 ). .-  (c~ + k -  1) (3.21) 
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Although (3.19) was derived under the assumption n > 3  it in fact 
reproduces the Ising and Heisenberg results given above when n equals two 
and three, respectively. Further special cases are 

. ,~4(K) : 2! K-2(cosh K -  1) (3.22) 

and 

25(K ) = 3! K-3(sinh K - K )  (3.23) 

In general 2n(K), which may be thought of as the partition function 
per site, is an analytic function of K for all finite n. We will see in Section 5, 
however, that in the n ~ oe limit one obtains a phase transition which in 
fact is already present when the system consists of merely two interacting 
spins. 

4. THE PAIR CORRELATION FUNCTION IN ONE D I M E N S I O N  

In order to calculate correlation functions it is convenient to 
parametrize the configuration space in terms of pairs of mutually 
orthogonal n-dimensional unit vectors a t =  (ar, br) for each site. This 
can be done by noting that an n x n skew-symmetric matrix of rank two 
satisfying the constraint (3.2) can be expressed in the form 

if and only if 

mij = aibj - ajbi, i, j = 1, 2,..., n (4.1) 

Ilall : I[bl/= 1 and a - b = 0  (4.2) 

With this parametrization the invariant measure on Mn can be expressed as 

d#(~r) = Cn~(llall 2 -  1) ~(llhll 2 - 1) 6(a" b) da db (4.3) 

where c~(x) is the Dirac delta function, da and db are the usual Lebesque 
measures on R n, and 

C~=~ (1/2) ~ F ( ; )  F ( ~ )  (4.4) 

is such that the measure is properly normalized. 
To evaluate the integral (3.7), written now in the form 

2,(K; Y)= f exp[(K/2) Tr(Ytm(a))] d/z(a) (4.5) 
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we use (4.3) and the integral representation 

1 f~+i~ 
6(x) = ~ e px dp (4�9 

c~ - -  J o y  

to express (4.5) in terms of multidimensional Gaussian integrals. After 
interchanging orders of integration and performing the Gaussian integrals 
one obtains, as shown in Appendix B, the expression 

2,(K; Y)=gl/2_F' /" (2M) 3 dpldp2dp3ep,+p2 
i w  

1 2 1 1/2 
�9 {DetI(plP2-~p3)In+-~K2y2]} (4�9 

where In is the n x n unit matrix and c~ is chosen so that all singularities in 
the integrand are to the left of the line z = a in the complex plane�9 The 
result (4.7) actually holds for any skew-symmetric n x n matrix Y. 

Using the fact that m(a')eMn can be expressed in the form gmog' 
with m 0 given by (3.12), the determinant in (4.7) with Y = m ( # )  can be 
seen to have the value 

(Pl P2 - ~p32) n- 2[(Pl P2 - lp32) - (K2/4) ] 2 (4.8) 

Subsequent contour integration and some perseverance reduces (4.7) to the 
result (3.19) found by group integration. 

Our main purpose in this section is to evaluate the pair correlation 
function defined by 

�9 exp ~ Tr(mtrmr+ 1) 
1 

I n  order to do this we need to evaluate the integral 

I(m')=f~od#(a)m(a)exp{KTr[m'tm(a)]} 

which, from (4.5), can be written as 

2 
/(m') = ~  (~ykl  [2.(K; Y)])Y=m' 

1 
= [2n(K)]-(N-1) fM "" f~t,~ Tr(m~m j) 

N 

~I d#(mr) 
r = l  

m' E m n 

(4.9) 

(4.1o) 

(4.11) 
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Using the expression (4.7) and the result 

c~ {Det[~zi+ ~2y2] } 1/2 
~Yk+ 

gives 

2 ! ? mkl 
r=,+~M, (e2_yZ)[Det(e2i+~Zm,2)]l /2 

(4.12) 

K , Ice I+ia~ I(rn ')=-~m dpldp2dp3 epI+p2 
ioo 

�9 I P l P e  1 , , , , /2-1 1 - 
% 

m' d = )-k [ ,~(K)]  (4.13) 

which shows, among other things, that m is an eigenfunction of the transfer 
integral operator with kernel exp[K/2 Tr(m'tm)] with eigenvalue d2JdK, 
the largest eigenvalue being 2" (with a constant as eigenfunction). 

From (4.9) and (4.13), it is not difficult to show that the pair 
correlation function is given by 

g r ' l  

(4.14) 

which is precisely of the form for the usual n-vector model, showing 
exponential decay for all finite n and K. 

5. THE SPHERICAL L IMIT  IN ONE D I M E N S I O N  

In order to examine the behavior of the model in the limit n ~ oo 
(with K scaled by a factor of n) we use the integral representations 

1F2(s; s + #, v + 1, a) - F(v + 1) f2 x s- l(ax )_v/2( 1 _ x)~ -1 
B(#, s) 

�9 iv(2a1/2x 1/2) dx (5.1) 

and 

( z / 2 )  n f 1 Iv(z)=F(V+�89189 - l (1 - - t z ) v  <l/2) eZ' dt (5.2) 
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to write 2,(nK), Eq. (3.19), in the form 

2.(nK) = F[(n/z)-ZF(n/2)l] F(1) ~ f ~  ~0 x(1 - x 2 ) - 2 ( 1  - y2) 2exp[nf(x ' y) ]  

(5.3) 

where 

f (x ,  y) = Kxy + I log(1 - x2)(1 - y2) (5.4) 

When K <  1,f(x,  y) takes on its maximum value when x = y  = 0 while 
for K > I  the maximum is obtained when x = y = ( 1 - K - a )  ~/2. It then 
follows from Laplace's method that the free energy 0(K) in the limit n ~ oo 
is given by 

- f l 0 ( K ) =  lim n_llog)~n(nK)=~2-1-1ogKfK K > I  (5.5) 
~ o o  ( u  K < I  

In order to evaluate the pair correlation function (4.14) we need to 
evaluate the correction term in the asymptotic expansion of the integral 
(5.3). Straightforward analysis gives 

22~ cl 2 ~ n - I C ( K ) ( 1 - K )  -2 K < I  
dK n K~Kn ~ I - - K  -1 K> 1 

as n ~  oo (5.6) 

where C(K) is analytic at K =  1, and from (4.14) we then have 

'r,r 
l ina  Tr(m~mr,) /K~K,j  ((1 - K - ~ )  Ir-r'l K >  1 (5.7) 

Thus, in the "spherical limit" (n---, oo) the model exhibits a rather 
unusual type of phase transition. The "correlation length" at the critical 
point Kc = 1 becomes zero and there is zero long-range order at all finite 
temperatures. The specific heat, however, has a jump discontinuity at To, 
taking the values k when K >  1 and zero when K <  1. It is to be noted that 
the occurrence of the phase transition is independent of the size of the 
system so that even the "two-spin" or zero-dimensional model undergoes a 
phase transition. It is interesting, in fact, that the expression (5.5) is iden- 
tical with the corresponding expression for the zero-dimensional and 
classical spherical models (11) but that the correlation functions behave dif- 
ferently in these cases. Finally, we observe that this unusual type of phase 
transition is not generated by the usual mechanism of asymptotic eigen- 
value degeneracy of the transfer operator, where one might have expected 
the left-hand side of (5.6) to approach unity for K >  1. 
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To show that the model is not dimension independent we consider in 
the following section the spherical limit of the Curie-Weiss version of the 
model. 

6. THE C U R I E - W E I S S  M O D E L  A N D  THE SPHERICAL L IMIT  

The Hamiltonian for the Curie-Weiss model consisting of N spins is 
given by 

where 

j N j 

~r 2N r,r ~ 1 T r ( m ' r m r ' ) = - - -  Tr(A'A)zN (6.1) 

N 

A = ~ mr (6.2) 
r ~ l  

is n x n skew symmetric and mr e M, .  
Using the Gaussian integral identity 

(6.3) 

the partition function for the model can be written as 

Zn,~(K)--- l~ d#(~ exp ~--~Tr(AtA) 
r 

[ 1 \X] 4~ J 1~ dy~j exp - Tr (V Y) 
- - c~  i < . j  

K N 
"{j 'M~ (6.4) 

where K = flJ and Y is the n x n skew-symmetric matrix whose elements are 
the integration variables Yij when i < j and - y0 when i > j. 

In the thermodynamic limit N ~ 0% with n fixed, the integrals over the 
Yu can be evaluated by Laplace's method yielding for the free energy 

fltp.(K) = - l i m  N 1 log  Zn,N(U ) 
N ~ o o  

minr (KTr(YtY)-I~ } (6.5) 
(yt= _y) 
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where use has been made of the definition (4.5) for the group integral 
appearing in (6.4). 

Assuming that Y has rank 2k and nonzero eigenvalues + ic~, o~ = 
1, 2,..., k, the representation (4.7) for 2,(K; Y) becomes 

).n(K; y ) _  Cn ~ + i ~ 1 7 6  2 P l P 2 - 4 P 3  2 
(2rti) 3 - ioo 

I 1 2 ( ' K ) 2 ]  - I  
�9 [ I  plp -ap  {6.6) 

~x=l 

where 

C n = T z ( l / 2 ) - ' l ' ( ; )  I ' ( ~ 2 1  ) (6.7) 

Expanding out the product in (6.6) and performing the integrals over 
193, P2, and p~, we obtain 

E( n )1' 2n(K; Y) = C, Z F -~ + ~ l~ F ( - - ~  + ~ l~ H (Kc~/2) 21~ 
It " �9 �9 lk 

,=o(n/2~-~-- -0/2]  ' ~, x{ 'x~ '"xk  Ii " lk 
(X/= ~/) 

where 

(6.8) 

u 2= - ~ c~2=~Tr(Y'Y) (6.9) 
ct=l 

and 

x~ = c~2/u 2 (6.10) 

Using the fact that xl + x2 + " + xk = 1, it is not difficult to see that 

k 
[ I  x~'~< 1 (6.11) 

ll "- tk i= 1 

and then to prove by induction on k that equality in (6.11) is realized only 
when one of the xi's is unity and the remainder are zero. That is, from 
(3.19) and (3.20) 

n n - 1  K2u2~ 
2n(K; Y) 4 iF2 1 ;2 ,  2 ; 7 J (6.12) 
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with equality realized on rank two skew-symmetric matrices satisfying (6.9) 
with k = 1. Equation (6.5) then shows that 

fltpn(K)=min{KU2 ( n  n-1 K4u2)} ,>/0 - - ~ - - l o g l f 2  1;~,  2 ; - (6.13) 

which is of standard mean-field form for all finite n. 
In the spherical limit we obtain, using (5.5), the expression 

where 

fi~b(K) = .-~lim n-~fltp~(nK)=min{-~-~-g(uK)}.>~o 

g(x)= { 0 - l - l o g  x x>~l 
x < l  

Performing the minimization in (6.14) then gives 

K <<, Kc 
where Kc is the unique solution of the equation 

1 - ( K +  x /K  Z -  2K) + log(K+ ~ ) 2  = 0 

(6.14) 

(6.15) 

(6.16) 

K > 2  (6.17) 

7. D I S C U S S I O N  

In this paper we have studied the classical O(n) matrix spin model 
introduced by Fuller and Lenard. Exact results were obtained for the free 
energy and pair correlation function for the open chain. As expected the 
model shows analytic behavior for all finite n and temperature. In the 
spherical limit n ~ 0% however, the one-dimensional model has an unusual 
kind of phase transition in which the specific heat has a jump discontinuity 
at a finite critical temperature but with zero long-range order for all finite 
temperatures. The phase transition is, in fact, manifest for finite systems so 
that even a two-spin system has the same critical behavior as the infinite 
system in the spherical limit. 

We also obtained an exact expression for the free energy of the 
Curie-Weiss version of the model which has the standard mean-field 
behavior for all finite n. In the spherical limit one also obtains mean-field 
behavior showing that in this limit the model is not dimension indepen- 
dent. 

The general behavior of the model in the spherical limit is an open 
question at this time but from the behavior of the one-dimensional model 
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we expect that the model will have richer critical phenomena in this limit 
than the usual spherical model which is obtained from an n ~ oo limit of 
the usual n-vector model. 

Finally, we note that a similar model to the one we considered here is 
currently being investigated in ~4 field theory in connection with the planar 
diagram approximation. (7-1~ Also, integration over a link in the Feynmann 
path integral for U(n) lattice QCD (12) requires the calculation of similar 
integrals to those considered in this article. The n --, oo limit is also studied 
in these papers, so perhaps our spherical limit results have some relevance 
to this work. 
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APPENDIX A. EVALUATION OF (3.18) 

In order to evaluate the integral (3.18) we use the result 

f: ( ') e . . . .  ~ ~F v+-~ Iv(z) (1.1) 

to first perform the integral over ~b'. The integral over ~b can then be perfor- 
med using the fact that 

fo ~/2 (sin ~ ) c o s h ( K  cos 0 cos ~)(Kx sin 0) (n [(n 4)/2] + 1 4)/2 

"I(n 4)/2(Kx sin 0 sin ~) &b 

= (Kx/x  sin20+cos20)-(~-3)/2I(n 3)/2(Kx/x2sin20+cos20) 

(1.2) 
With x = sin 0' and y = c o s  0 we then have 

2.(K)=Tz 1 ( / ' / - - 2 ) ( n - 3 ) F ( ~  --~) 

�9 ff~ dx dy(1 - y2)~/2[-(1 - x2)(1 - y2)](~-4)/2 

�9 (Kxflx2+y2-x2y2/2)(~-3)/2I(~_3)/2(Kx/x2+y2-x2y2) (A.3) 

822/43/1-2-4 
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The elliptic substitution 

U = NIX 2 -I- y2  __ x2y2"~ 

v = f ( x ,  y) j ue(0 ,  1), 

such that 
(1 - y2)1/2 dx dy = u du dv 

then gives 

v e (0, ~/2) 

Angelescu et al. 

(A.4) 

(A.5) 

2 r F ( n -  1)/2]i_] _f~ 2 n ( K ) = B - ~ - ~ ) 7 ~  ' u(1--U2)(n--4)/21(n 3,/2(Ku)(Ku/2)-r 

( n n - l K 2 )  
=1F2 1;~,  y ; ~  (A.6) 

where in the last step we have used (5.1). 

A P P E N D I X  B. E V A L U A T I O N  OF (4 .5 )  

In order to evaluate (4.5) we use the normalized measure (4.3) and the 
representation (4.6) for the three delta functions appearing in (4.3) to write 
(4.5) in the form 

2,(K; y)=g(1/2) n F F (2~zi) 3 dpldpzdp3eP,+p2 

�9 fR2o exp[ - (x, Tx)] dx (B.1) 

where x denotes the 2n-dimensional vector (ab), T is the 2n x 2n matrix 

( plI~ �89 - KY)~ (B.2) 
T= \�89 + KY) p2I, ] 

and, in the above reduction, use has been made of the representation (4.1) 
of re(a) in terms of a and b. 

On performing the Gaussian integral in (B.1) we are left with 

" f[ +i~ dpl dp2 dp3 epl+ p2(Det (B.3) 

which is easily seen, from (B.2), to reduce to the required result given in 
(4.7). 
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